Coevolutionary Convergence to Global Optima
نویسنده
چکیده
We discuss a theory for a realistic, applicable scaled genetic algorithm (GA) which converges asymptoticly to global optima in a coevolutionary setting involving two species. It is shown for the first time that coevolutionary arms races yielding global optima can be implemented successfully in a procedure similar to simulated annealing.
منابع مشابه
Classification with Scaled Genetic Algorithms in a Coevolutionary Setting
This work discusses asymptotic convergence of scaled genetic algorithms in a coevolutionary setting where the underlying population contains fixed numbers of creatures of various types. These types of creatures can act on each other in cooperative or competitive manner. The genetic algorithm uses common mutation and crossover operators as well as proportional fitness selection. By a scaled gene...
متن کاملA Cooperative Coevolutionary and ε-Dominance Based MOPSO
Particle Swarm Optimizers (PSOs) have been applied to solve Multi-Objective Optimization Problems (MOPs) for its successful applications in solving single objective optimization problems and are named as Multi-Objective PSOs (MOPSOs). However, MOPSOs are often trapped in local optima, cost more function evaluations and suffer from the curse of dimensionality. A cooperative coevolutionary and ε-...
متن کاملA scalable coevolutionary multi-objective particle swarm optimizer
Multi-Objective Particle Swarm Optimizers (MOPSOs) are easily trapped in local optima, cost more function evaluations and suffer from the curse of dimensionality. A scalable cooperative coevolution and -dominance based MOPSO (CEPSO) is proposed to address these issues. In CEPSO, Multi-objective Optimization Problems (MOPs) are decomposed in terms of their decision variables and are optimized b...
متن کاملA Meta-heuristic Algorithm for Global Numerical Optimization Problems inspired by Vortex in fluid physics
One of the most important issues in engineering is to find the optimal global points of the functions used. It is not easy to find such a point in some functions due to the reasons such as large number of dimensions or inability to derive them from the function. Also in engineering modeling, we do not have the relationships of many functions, but we can input and output them as a black box. The...
متن کاملSelf-Adaptation and Global Convergence: A Counter-Example
The self-adaptation of the mutation distribution is a distinguishing feature of evolutionary algorithms that optimize over continuous variables. It is widely recognized that self-adaptation accelerates the search for optima and enhances the ability to locate optima accurately, but it is generally unclear whether these optima are global ones or not. Here, it is proven that the probability of con...
متن کامل